Acupuncture for ovulation disorders and PCOS.

Polycystic ovarian syndrome is the number one reproductive disease in women.   This disease disrupts normal ovulatory cycles which can result in heartbreaking infertility for millions of women.  Known hormonal changes in PCOS include excess androgens (ie: testosterone), and insulin resistance.  Most thought now is leaning towards insulin resistance being the primary cause of PCOS, with genetic factors playing a role, but once the cycle of anovulation begins it feeds back on itself, causing the condition to remain in a vicious cycle.  Women with PCOS have not only insulin resistance, but also have neuroendocrine imbalances, resulting in elevated LH (lutenizing hormone) levels.  Having a high LH to FSH ratio is one of the hallmarks of polycystic ovarian syndrome or persistent anovulation.  In response to a combination of high LH and insulin resistance, the follicles in the ovary will begin to secrete too many male hormones (androgens) which then inhibit the hormonal pathways that are needed to stimulate ovulation.

Various medications are traditionally used to induce ovulation in women with PCOS.  A growing body of evidence now exists indicating that low-frequency electroacupuncture is as effective as commonly used medications in inducing ovulation.  Furthermore, this form of acupuncture can benefit many of the hormonal imbalances seen in polycystic ovarian syndrome.  Thousands of women worldwide use acupuncture therapy for PCOS and so I’d like to discuss how it works, and why it is so beneficial to induce ovulation.

General principles of how electroacupuncture stimulates the ovaries through the nervous system

Electroacupuncture has been found to profoundly effect the reproductive organs, through mechanisms in the sympathetic nervous system, endocrine system, and neuroendocrine system.  When needles are inserted into certain points and stimulated in a specific manner, this produces a neurological reflex transmitted to the organ correlated with that nerve pathway.  For example, needles inserted into the leg muscles below the knee, lower back, or abdomen in specific regions cause a response which measurably affects the ovary.  In addition, the nervous system will transmit a signal to the brain, and the brain then emits a response which affects the organ from a central mechanism.  These effects have been investigated through measurements of hormones, neuropeptides, and circulatory changes on both animals and humans receiving this specific type of electroacupuncture.

Nervous system alterations in PCOS

Evidence indicates that women with pcos have abnormal circulating levels of a neurohormone called β-endorphin.  β-endorphin is known to increase insulin production and reduce insulin excretion by the liver, which is very much implicated in PCOS.   It has also been found that women with PCOS have unusually high amounts of sympathetic nerve fibres in their ovaries.  These nerve fibres cause unusual stimulation of the ovary by the sympathetic nervous system (the part of the nervous system associated with “flight or fight” responses in the body, among other processes).  Stimulation of these nerve fibres can cause the ovaries to produce androgens, which then impair normal ovulation.  Women with PCOS have also been found to have high amounts of nerve growth factors in their ovaries, something which is associated with high levels of sympathetic nervous system activity.   Disturbances in central and peripheral β-endorphin release, high androgens, insulin resistance, abdominal obesity, and cardiovascular disease are associated with increased sympathetic nervous system activity, and all of these are also associated with the pathology of PCOS.  In a recent study by Elizabet Stener-Vitorin in Sweden, direct intraneural testing found a strong correlation between levels of sympathetic nervous system activity and testosterone levels in women with PCOS.  Those who had the highest amounts of sympathetic nervous system activity were found to have the highest testosterone levels and the most severe PCOS conditions.

What evidence exists for acupuncture inducing ovulation?

Several studies exist on low frequency electroacupuncture and ovulation induction.  In one trial, the effect of a series of 14 electroacupuncture treatments on 24 anovulatory women with pcos was investigated.  In 38% of these women, regular ovulation was induced.   Three months after the last treatment, LH/FSH ratios and testosterone levels were significantly decreased, a sign of improvement in PCOS pathology.   In another study done on a group of women given human menopausal gonadotrophin (a commonly used drug in the treatment of infertility), acupuncture was compared to hCG injections in order to assess its effect on ovulation.  Traditionally hCG is given to stimulate ovulation during medicated cycles at fertility clinics.  It was found that a single acupuncture treatment induced ovulation as effectively as the as the hCG injection and reduced the incidence of ovarian hyperstimulation syndrome, a painful side effect of medicated cycles.  Other studies have also indicated enhanced ovarian response when acupuncture is added to medicated cycles.  Female rats with PCOS induced by chronic exposure to DHT (a form of testosterone) were given low frequency electroacupuncture and physical exercise.  The treatment increased the amount of healthy follicles in the ovaries,  and significantly normalized cycles.

Effects of electroacupuncture on nervous system changes in PCOS

It has also been found that electro-acupuncture can regulate parts of the central nervous system related to dysfunction in PCOS.  Specifically, beneficial effects on neurohormones such as GnRH(Gonadotropin releasing hormone) and androgen receptor proteins, indicate that electro-acupuncture significantly benefits the hypothalamic-pituitary-ovarian axis and through this can help to restore normal cycling.  Electroacupuncture was also found in 3 recent studies to increase ovarian blood flow through effects on sympathetic nervous system pathways.  In addition, it has been found in two studies to reduce high peripheral circulating β-endorphins in women with PCOS, and thereby improve insulin resistance.   As sympathetic nerve activity appears to contribute to the development and maintenance of PCOS, the beneficial effects of electroacupuncture, and also exercise, may be mediated by nervous system modulation to the ovaries.

Electro-acupuncture appears to work through multiple pathways to disrupt the “vicious cycle” of PCOS.  Even though much more research needs to be done to determine all of the mechanisms involved, its safety and low incidence of side effects makes it an excellent therapy to stimulate ovulation naturally for the many women who suffer with this disease.

Andersson, S., Lundeberg, T., 1995. Acupuncture — from empiricism to science:functional background to acupuncture effects in pain and disease. Med. Hypotheses 45, 271–281.

Cai, X., 1997. Substitution of acupuncture for HCG in ovulation induction. J. Tradit. Chin. Med. 17, 119–121.

Carmina, E., Ditkoff, E.C., Malizia, G., Vijod, A.G., Janni, A., Lobo, R.A., 1992. Increased circulating levels of immunoreactive beta-endorphin in polycystic ovary syndrome is not caused by increased pituitary secretion. Am. J. Obstet. Gynecol. 167,

Chen, B.Y., Yu, J., 1991. Relationship between blood radioimmunoreactive beta-endorphin and hand skin temperature during the electro-acupuncture induction of ovulation. Acupunct. Electrother.

Lobo, R.A., Granger, L. R., Paul, W.L., Goebelsmann, U., Mishell Jr., D.R., 1983. Psychological stress and increases in urinary norepinephrine metabolites, platelet serotonin, and adrenal androgens in women with polycystic ovary syndrome. Am. J. Obstet. Gynecol. 145, 496–503.

Feng, Y., Johansson, J., Shao, R., Manneras, L., Fernandez-Rodriguez, J., Billig, H., Stener-Victorin, E., 2009. Hypothalamic neuroendocrine functions in rats with dihydrotestosterone-induced polycystic ovary syndrome: effects of low-frequency electroacupuncture. PLoS ONE 4, e6638. produces skeletal muscle vasodilation following antidromic stimulation of unmyelinated afferents in the dorsal root in rats. Neurosci. Lett. 283, 137–140.

Jin, C.L., Tohya, K., Kuribayashi, K., Kimura, M., Hirao, Y.H., 2009. Increased oocyte production after acupuncture treatment during superovulation process in mice. J. of Reprod. & Conception 20, 35–44.

Manneras, L., Cajander, S., Lonn, M., Stener-Victorin, E., 2009. Acupuncture and exercise restore adipose tissue expression of sympathetic markers and improve ovarian morphology in rats with dihydrotestosterone-induced PCOS. Am. J. Physiol. Regul. Integr. Comp. Physiol. 296, R1124–R1131.

Stener-Victorin, E., Wu, X., Effects and mechanisms of acupuncture in the reproductive system, Auton. Neurosci.(2010)

Stener-Victorin, E., Lindholm, C., 2004. Immunity and beta-endorphin concentrations in hypothalamus and plasma in rats with steroid-induced polycystic ovaries: effect of low-frequency electroacupuncture. Biol. Reprod. 70, 329–333.

Stener-Victorin, E., Waldenstrom, U., Tagnfors, U., Lundeberg, T., Lindstedt, G., Janson, P.O., 2006. Effects of electro-acupuncture on anovulation in women with polycystic ovary syndrome. Acta Obstet. Gynecol. Scand.

Stener-Victorin, E., Lundeberg, T., Waldenstrom, U., Manni, L., Aloe, L., Gunnarsson, S., Janson, P.O., 2000a. Effects of electro-acupuncture on nerve growth factor and ovarian morphology in rats with experimentally induced polycystic ovaries. Biol. Reprod. 63, 1497–1503.

Stener-Victorin, E., Lundeberg, T., Waldenstrom, U., Bileviciute-Ljungar, I., Janson, P.O., 2001. Effects of electro-acupuncture on corticotropin-releasing factor in rats with experimentally-induced polycystic ovaries. Neuropeptides 35, 227–231.

Stener-Victorin, E., Kobayashi, R., Kurosawa, M., 2003a. Ovarian blood flow responses to electro-acupuncture stimulation at different frequencies and intensities in anaesthetized rats. Auton. Neurosci.: Basic and Clin. 108, 50–56.

Stener-Victorin, E., Lundeberg, T., Cajander, S., Aloe, L., Manni, L., Waldenstrom, U., Janson, P.O., 2003b. Steroid-induced polycystic ovaries in rats: effect of electro- acupuncture on concentrations of endothelin-1 and nerve growth factor (NGF), and expression of NGF mRNA in the ovaries, the adrenal glands, and the central nervous system. Reprod. Biol. Endocrinol. 1, 33.

Stener-Victorin, E., Fujisawa, S., Kurosawa, M., 2006. Ovarian blood flow responses to electroacupuncture stimulation depend on estrous cycle and on site and frequency of stimulation in anesthetized rats. J. Appl. Physiol. 101, 84–91.

Stener-Victorin, E., Jedel, E., Manneras, L., 2008. Acupuncture in polycystic ovary syndrome: current experimental and clinical evidence. J. Neuroendocrinol. 20, 290–298.

Stener-Victorin, E., Jedel, E., Janson, P.O., Sverrisdottir, Y.B., 2009. Low-frequency electro-acupuncture and physical exercise decrease high muscle sympathetic nerve activity in polycystic ovary syndrome. Am.J.Physiol.Regul.Integr.Comp.Physiol. 297 (2), R387R395.

Zhao, H., Tian, Z.Z., Chen, B.Y., 2003a. An important role of corticotropin-releasing hormone in electroacupuncture normalizing the subnormal function of hypothalamus–pituitary–ovary axis in ovariectomized rats. Neurosci. Lett. 349, 25–28.

H1N1 Treatments: Anti-Inflammatory Properties of Herbal Medicines


It is now commonly accepted that many severe or fatal reactions to influenza are caused by intense inflammatory overreactions of the immune system.    A group from the Research School of Biology, Australian National University released an article on September 24, 2009 compiling evidence on this topic.

Cytokines are chemicals which are produced in immunological inflammatory reactions in the body.  Studies indicate that certain plant extracts can be protective against lethal reactions for mice which are infected with a virulent influenza strain. This occurs through inhibition of novel inflammatory cytokine High Mobility Group Box 1 protein (HMGB1) by these plant extracts.  Angelica sinensis (also known as Dang Gui) and Salvia Miltiorrhzia (also known as Dan Shen) were two of the herbal medicines studied which had this effect on HMGB1.

A drug known as gemfibrozil (a drug normally used to lower blood lipids) prevented a significant proportion of mice infected with H1N2 influenza from developing a fatal disease in a 2007 study.  Gemfibrozil has a known ability to reduce expression of inflammatory cytokines, and this is thought to be the mechanism through which it protects against severe or fatal reactions in the mice.  The action of this drug adds to the evidence that it is the body’s overproduction of cytokines which is involved in these severe cases of influenza.

Other studies have investigated Red Clover, Ginseng, Isatis, and Andrographis indicating that they modulate and reduce various aspects of cytokine response.  Forsythia, Honeysuckle, Balloon Flower root, Licorice, Camilla sinensis (green tea) and Ginger have also been researched, results of which indicate that they reduce both production of pro-inflammatory cytokines and pro- inflammatory mediators (such as reactive oxygen species and nitric oxide).  This is likely caused by suppressing a gene known as NF-kB which is often elevated in severe viral disease states, and which is related to disease conditions leading to multiple organ failure such as those in fatal influenza sepsis.

Combinations of these herbs are often used in Traditional Chinese Medicine to treat influenza from the earliest stages onward.  For this reason it is particularly interesting to determine the immunological mechanisms through which they work.

In summary, this information indicates that it is the host response of the human body which may be involved in many of the fatal reactions in viral influenza infections.  Treatments which can modulate this response in a patient who has contracted a viral influenza are therefore of great interest.  More research needs to be done on these herbs since due to their mechanisms, they may be promising therapies to integrate with conventional influenza treatments.


Alleva, L, Cai C, Clark I. 2009.  Using Complementary and Alternative Medicines to Target the Host Response in Severe Influenza.  Evid Based Complement Alternat Med.  Sep 24. [Epub ahead of print]

Aldieri E, Atragene D, Bergandi L, Riganti C, Costamagna C, Bosia A, et al. Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation. FEBS Lett 2003; 552:141–4.

Budd A, Alleva L, Alsharifi M, Koskinen A, Smythe V, Mullbacher A, et al. Increased survival after gemfibrozil treatment of severe mouse influenza. Antimicrob Agents Chemother 2007;51: 2965–8.

Chao WW, Kuo YH, Li WC, Lin BF. The production of nitric oxide and prostaglandin E2 in peritoneal macrophages is inhibited by Andrographis paniculata, Angelica sinensis and Morus alba ethyl acetate fractions. J Ethnopharmacol 2009;122:68–75.

Chen X, Wu T, Liu G. Chinese medicinal herbs for influenza: a systematic review. J Altern Complement Med 2006;12:171–80.

Chen X, Li W, Wang H. More tea for septic patients?—green tea may reduce endotoxin-induced release of high mobility group box 1 and other pro-inflammatory cytokines. Med Hypotheses 2006;66:

Chen XY, Wu TX, Liu GJ, Wang Q, Zheng J, Wei J, et al. Chinesemedicinal herbs for influenza. Cochrane Database Syst Rev

Cheung CY, Poon LL, Lau AS, Luk W, Lau YL, Shortridge KF, et al. Induction of proinflammatory cytokines in human macrophages by influenza A (H5N1) viruses: a mechanism for the unusual severity of human disease? Lancet 2002;360:1831–7.

Czura CJ, Wang H, Tracey KJ. Dual roles for HMGB1: DNA binding and cytokine. J Endotoxin Res 2001;7:315–21.

Esmon CT. Inflammation and the activated protein C anticoagulant pathway. Semin Thromb Hemost 2006;1:49–60.

Hampton T. Virulence of 1918 influenza virus linked to inflammatory innate immune response. JAMA 2007;297:580.

Kwon HM, Choi YJ, Choi JS, Kang SW, Bae JY, Kang IJ, et al. Blockade of cytokine-induced endothelial cell adhesion molecule expression by licorice isoliquiritigenin through NF-kB signal disruption. Exp Biol Med (Maywood) 2007;232:235–45.

Lim DS, Bae KG, Jung IS, Kim CH, Yun YS, Song JY. Anti-septicaemic effect of polysaccharide from Panax ginseng by macrophage activation. J Infect 2002;45:32–8.

Pan TL, Leu YL, Chang YK, Tai PJ, Lin KH, et al. Antiviral effects of Salvia miltiorrhiza (Danshen) against enterovirus

Quan FS, Compans RW, Cho YK, Kang SM. Ginseng and Salviae herbs play a role as immune activators and modulate immune responses during influenza virus infection. Vaccine 2007;25:272–82.

Surh YJ, Lee JY, Choi KJ, Ko SR. Effects of selected ginsenosides on phorbol ester-induced expression of cyclooxygenase-2 and activation of NF-kB and ERK1/2 in mouse skin. Ann NY Acad Sci 2002;973:396–401.

Utsunomiya T, Kobayashi M, Pollard RB, Suzuki F. Glycyrrhizin, an active component of licorice roots, reduces morbidity and mortality of mice infected with lethal doses of influenza virus. Antimicrob Agents Chemother 1997;41:551–6. 53.

Wang J, Zhou H, Zheng J, Cheng J, Liu W, Ding G, et al. The antimalarial artemisinin synergizes with antibiotics to protect against lethal live Escherichia coli challenge by decreasing pro- inflammatory cytokine release. Antimicrob Agents Chemother 2006;50:2420–7. May 1215.

Wang H, Li W, Li J, Rendon Mitchell B, Ochani M, Ashok M, et al. The aqueous extract of a popular herbal nutrient supplement,
Angelica sinensis, protects mice against lethal endotoxemia and sepsis. J Nutr 2006;136:360–5.

Weir Chiang You, Wen Chuan Lin, Jia Tsz Huang and Chang Chi Hsieh.  2009. Indigowood root extract protects hematopoietic cells, reduces tissue damage and modulates inflammatory cytokines after total-body irradiation: Does Indirubin play a role in radioprotection? Phytomedicine.  July

Xie CH, Zhang MS, Zhou YF, Han G, Cao Z, Zhou FX, et al. Chinese medicine Angelica sinensis suppresses radiation-induced expression of TNF-alpha and TGF-beta1 in mice. Oncol Rep 2006;15:1429–36.